
Supplementary Material C

Formal derivation of information locality

The aim of this section is to show that, under progressive erasure noise, processing cost

increases when context words that predict a target word are distant from that target word. A

derivation of this result was originally presented in Futrell and Levy (2017). The simpler

derivation here was originally presented in Futrell (2019).

Assume that the memory encoding function M is structured such that some proportion

of the information available in a word is lost depending on how long the word has been in

memory. For a word which has been in memory for one timestep, the proportion of

information which is lost is a constant e1; for a word which has been in memory for two

timesteps, the proportion of information lost is e2; in general for a word which has been in

memory for t timesteps, the proportion of information lost is et. Assume further that et is

monotonically increasing in t: i.e. t < · implies et Æ e· . This memory model is equivalent to

assuming that the context is subject to erasure noise, where the erasure rate is assumed to

increase with time, a noise distribution we call progressive erasure noise.

Under progressive erasure noise, the memory representation r of the context

w1, . . . , wi≠1 can be represented as a sequence of symbols r1, . . . , ri≠1. Each symbol rj , called

a memory symbol, is equal either to the context word wj or to the erasure symbol E. The

surprisal of a word wi given the memory representation r1, . . . , ri≠1 can be written in two

terms:

≠ log p(wi|r1, . . . , ri≠1) = ≠ log p(wi) ≠ pmi(wi; r1, . . . , ri≠1),

where pmi(wi; r1, . . . , ri≠1) = log p(wi|r1,...,ri≠1)
p(wi) is the pointwise mutual information (Church

& Hanks, 1990; Fano, 1961) of the word and the memory representation, giving the extent to

which the particular memory representation predicts the particular word. We can now use the

chain rule to break the pointwise mutual information into separate terms, one for each symbol
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in the memory representation:

pmi(wi; r1, . . . , ri≠1) =
i≠1ÿ

j=1
pmi(wi; rj|r1, . . . , rj≠1)

=
i≠1ÿ

j=1
pmi(wi; rj) ≠

i≠1ÿ

j=1
pmi(wi; rj; r1, . . . , rj≠1)

=
i≠1ÿ

j=1
pmi(wi; rj) ≠ R, (21)

where pmi(x; y; z) is the three-way pointwise interaction information of three variables

(Bell, 2003), indicating the extent to which the conditional pmi(wi; rj|r1, . . . , rj≠1) differs

from the unconditional pmi(wi; rj). These higher-order interaction terms are then grouped

together in a term called R.

Now substituting Eq. 21 into Eq. 3 (repeated below), we get an expression for

processing difficulty in terms of the pmi of each memory symbol with the current word:

Dlc surprisal(wi|w1, . . . , wi≠1) Ã E
r|w1,...,wi≠1

[≠ log p(wi|r)] (3)

= E
r|w1,...,wi≠1

[≠ log p(wi) ≠ pmi(wi; r)]

= E
r|w1,...,wi≠1

S

U≠ log p(wi) ≠
i≠1ÿ

j=1
pmi(wi; rj) + R

T

V

= ≠ log p(wi) ≠ E
r|w1,...,wi≠1

S

U
i≠1ÿ

j=1
pmi(wi; rj) + R

T

V

= ≠ log p(wi) ≠
i≠1ÿ

j=1
E

rj |wj

[pmi(wi; rj)] + E
r|w1,...,wi≠1

[R] . (22)

It remains to calculate the expected pmi of the current word and a memory symbol given the

distribution of possible memory symbols. Recall that each rj is either equal to the erasure

symbol E (with probability ei≠j) or to the word wj (with probability 1 ≠ ei≠j). If rj = E, then

pmi(wi; rj) = 0; otherwise pmi(wi; rj) = pmi(wi; wj). Therefore the expected pmi between a

word wi and a memory symbol rj is (1 ≠ ei≠j)pmi(wi; wj). The effect of erasure noise in the

higher-order terms collected in R is more complicated, but in general will have the effect of

reducing their magnitude, because a higher-order interaction information term will have a

value of 0 whenever any single variable in it is erased. Therefore we can write the expected

processing difficulty per word as:

Dlc surprisal(wi|w1, . . . , wi≠1) Ã ≠ log p(wi) ≠
i≠1ÿ

j=1
(1 ≠ ei≠j)pmi(wi; wj) + o(K), (23)
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where o(K) indicates a value that is is bounded by K, and K is the sum of all higher-order

interaction information terms involving the words w1, . . . , wi≠1.

Next, we subtract the value of Dsurprisal from Dlc surprisal to get an expression for memory

distortion (introduced in Supplementary Material A), which is the excess processing cost

induced by memory limitations, above and beyond the processing cost predicted by plain

surprisal theory. Assuming the higher-order terms collected in o(K) can be neglected, the

memory distortion comes out to:

Dlc surprisal(wi|w1, . . . , wi≠1) ≠ Dsurprisal(wi|w1, . . . , wi≠1) =
i≠1ÿ

j=1
ei≠jpmi(wi; wj), (12)

which was the expression given in Section 5.1. As words wi and wj become more distant from

each other, the value of the erasure probability ei≠j must increase, so the value of Eq. 12 must

increase. Therefore the theory predicts increased processing difficulty as an increasing

function of the distance between wi and wj in direct proportion to the pointwise mutual

information between them.

If we include the effects of the higher-order terms collected in K, then Eq. 23 also

implies that processing difficulty will increase when groups of elements with high interaction

information are separated from each other in time. See Bell (2003) for the relevant technical

details on interaction information.
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